Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry (Mosc) ; 88(11): 1944-1955, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38105211

RESUMO

Drought severely slows down plant growth, decreases crop yield, and affects various physiological processes in plants. We examined four local bread wheat cultivars with different drought tolerance (drought-tolerant Zirva 85 and Murov 2 and drought-sensitive Aran and Gyzyl bughda cultivars). Leaves from seedlings of drought-tolerant plants demonstrated higher activity of antioxidant enzymes and lower levels of malondialdehyde and hydrogen peroxide. The content of soluble proteins in drought-exposed increased, possibly due to the stress-induced activation of gene expression and protein synthesis. Drought-exposed Zirva 85 plants exhibited an elevated activity of nitrogen and carbon metabolism enzymes. Ultrastructural analysis by transmission electron microscopy showed drought-induced damage to mesophyll cells and chloroplast membranes, although it was manifested less in the drought-tolerant cultivars. Comparative analysis of the activity of metabolic and antioxidant enzymes, as well as observed ultrastructural changes in drought-exposed plants revealed that the response to drought of seedlings was more pronounced in drought-tolerant cultivars. These findings can be used in further studies of drought stress in wheat plants under natural conditions.


Assuntos
Antioxidantes , Triticum , Antioxidantes/metabolismo , Triticum/metabolismo , Secas , Folhas de Planta/metabolismo , Desenvolvimento Vegetal , Estresse Fisiológico
2.
Funct Plant Biol ; 47(11): 998-1006, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32564782

RESUMO

The ascorbate-glutathione (AsA-GSH) cycle is a major pathway of H2O2 scavenging in plants. The effect of diurnal variations in hydrogen peroxide (H2O2) content, the intensity of lipid peroxidation (malondialdehyde, MDA), photosynthesis, antioxidants and antioxidative enzyme activities involved in AsA-GSH metabolism has been studied comparatively in leaves of durum (Triticum durum Desf.) and bread (Triticum aestivum L.) wheat genotypes exposed to soil drought. Drought stress caused an increase in the content of H2O2, MDA, alterations in the activities of AsA-GSH cycle enzymes and quantitative changes in AsA and GSH content during the day. PSII efficiency was significantly lower in the control and drought exposed leaves at the highest temperature in the afternoon. The ascorbate peroxidase activity was found to increase and ascorbic acid amount decreased with increasing temperature during the day. Further, the glutathione amount and glutathione reductase activity increased at the expense of the regeneration of the oxidised form of glutathione. Our results revealed that wheat can tolerate drought stress by enhancing the antioxidant enzyme activities and alteration of the concentration of ascorbate and glutathione.


Assuntos
Secas , Triticum , Genótipo , Glutationa , Peróxido de Hidrogênio , Triticum/genética
3.
Funct Plant Biol ; 47(11): 970-976, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32574552

RESUMO

A characteristic feature of C4 plants is the differentiation of the photosynthetic leaf tissues into two distinct cell types: mesophyll (M) and bundle sheath (BS) cells. We have investigated several biochemical parameters, including pigment composition, polypeptide patterns, fluorescence at 77K, the activity of photosystems and ultrastructure of mesophyll and bundle sheath chloroplasts of maize (Zea mays L.) plants. It is shown that the BS chloroplasts have ~2-fold higher chlorophyll a/b ratio than M chloroplasts, 6.15 and 3.12 respectively. The PSI apoprotein (68 kDa) was more abundant in BS than in M thylakoids. Polypeptides belonging to PSII core antenna, are in similar amounts in both types of membranes, but the 45kDa band is more intensive in M thylakoids. Polypeptides in the region of 28-24 kDa of the light-harvesting complex of PSII (LHCII) are also present in both types of chloroplasts, though their amounts are reduced in BS thylakoids. The chlorophyll fluorescence emission spectra in M cells showed the presence of three bands at 686, 695 and 735 nm characteristics of LHCII, PSII core and PSI complexes, respectively. However, in the fluorescence spectrum of agranal plastids, there are almost traces of the band at 695 nm, which belongs to the PSII core complex. The research results revealed that the photochemical activity of PSII in BS chloroplasts is ~5 times less than in the chloroplasts of M cells. The highest PSI activity was found in maize BS chloroplasts.


Assuntos
Tilacoides , Zea mays , Clorofila A/metabolismo , Cloroplastos/metabolismo , Fotossíntese , Tilacoides/metabolismo
4.
Photosynth Res ; 130(1-3): 215-223, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26988099

RESUMO

Water deficit is a key factor influencing the yield and quality of crops. In the present study, the photosynthetic responses by means of chlorophyll fluorescence of chloroplasts, thylakoid membrane proteins, and antioxidant components were analyzed in wheat (Triticum durum Desf.) plants differing in their tolerance to drought. Two durum winter wheat varieties, Barakatli 95 (drought tolerant) and Garagylchyg 2 (drought sensitive) were grown under field well-watered and drought conditions. It was found that contents of the PS I core (CPI) with Mr of 123 kD and apoprotein P700 with Mr of 63 kD were relatively higher in Barakatli 95 variety under drought stress compared with the control plants. Synthesis of α- and ß-subunits of CF1 ATP-synthase complex with Mr of 55 and 53.5 kD also slightly increased in the tolerant Barakatli 95 and decreased in the drought sensitive variety Garagylchyg 2. A decrease in the intensity of 30 kD band and a significant increase were found in the content of the 25-16 kD region in Garagylchyg 2 variety. The synthesis of 60 kD and content of low molecular mass polypeptides (21.5 and 12 kD) were increased in the tolerant genotype Barakatli 95. The intensity of peaks at 687, 695, and 742 nm considerably increases in the fluorescence spectra (77 K) of chloroplasts isolated from the sensitive variety Garagylchyg 2, and there is a stimulation of the ratio of fluorescence band intensity F687/F740. At the same time, higher level of glycine betaine was found in the drought tolerant variety compared with the control one throughout the different periods of growth.


Assuntos
Antioxidantes/metabolismo , Fotossíntese , Triticum/metabolismo , Clorofila/metabolismo , Cloroplastos/metabolismo , Desidratação/metabolismo , Fotossíntese/fisiologia , Tilacoides/metabolismo , Triticum/fisiologia
5.
Photosynth Res ; 125(1-2): 279-89, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26008794

RESUMO

The dynamics of the activity of catalase, ascorbate peroxidase, guaiacol peroxidase, and benzidine peroxidase, as well as the level of hydrogen peroxide in the vegetative organs of durum wheat (Triticum durum Desf.) cultivars was studied under long-term soil drought conditions. It was established that hydrogen peroxide generation occurred at early stages of stress in the tolerant variety Barakatli-95, whereas in the susceptible variety Garagylchyg-2 its significant amounts were accumulated only at later stages. Garagylchyg-2 shows a larger reduction of photochemical activity of PS II in both genotypes at all stages of ontogenesis under drought stress than Barakatli-95. The highest activity of catalase which plays a leading role in the neutralization of hydrogen peroxide was observed in the leaves and roots of the drought-tolerant variety Barakatli-95. Despite the fact that the protection system also includes peroxidases, the activity of these enzymes even after synthesis of their new portions is substantially lower compared with catalase. Native PAGE electrophoresis revealed the presence of one isoform of CAT, seven isoforms of APX, three isoforms of GPO, and three isoforms of BPO in the leaves, and also three isoforms of CAT, four isoforms of APX, two isoforms of GPO, and six isoforms of BPO in the roots of wheat. One isoform of CAT was found in the roots when water supply was normal and three isoforms were observed under drought conditions. Stress associated with long-term soil drought in the roots of wheat has led to an increase in the heterogeneity due to the formation of two new sedentary forms of catalase: CAT2 and CAT3.


Assuntos
Antioxidantes/metabolismo , Peróxido de Hidrogênio/metabolismo , Triticum/fisiologia , Ascorbato Peroxidases/metabolismo , Catalase/metabolismo , Secas , Genótipo , Peroxidase/metabolismo , Folhas de Planta/enzimologia , Folhas de Planta/fisiologia , Raízes de Plantas/enzimologia , Raízes de Plantas/fisiologia , Solo , Estresse Fisiológico , Triticum/enzimologia
6.
Plant Physiol Biochem ; 81: 54-60, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24560039

RESUMO

Water is a key factor influencing the yield and quality of crops. One of the parameters of plant biological tolerance to constantly changing environmental conditions is the change of activities and numerous molecular forms of antioxidant enzymes. Two durum (Triticum durum Desf.) wheat varieties contrasting for drought tolerance, such as Barakatli-95 (drought tolerant) and Garagylchyg-2 (drought sensitive) were grown over a wide area in the field. Experiments were carried out to study the effect of soil drought on changes in activities and subcellular localization of superoxide dismutase isoforms. The levels of malondialdehyde, glycine betaine and total proteins were also analyzed. The level of the enzyme activity appeared to depend on the wheat varieties, duration of drought and stages of leaf development. Native polyacrylamide gel electrophoresis (PAGE) revealed the presence of 9 isoenzymes of superoxide dismutase in wheat leaves during drought. Mn-SOD was found in the mitochondrial fractions, Fe-SOD in the chloroplast fraction and Cu/Zn-SOD is localized in all subcellular fractions. Wheat leaves contain three different isoforms of SOD (Mn-, Fe-, Cu/Zn-SOD). Three isoforms of Mn-SOD, one isoform of Fe-SOD and five of Cu/Zn-SOD were observed in wheat leaves using 3 mM KCN and 5 mM H2O2 as selective inhibitors. The expression of Mn-SOD was preferentially enhanced by drought stress. It seems that Mn-SOD isoforms more than SOD ones play a major role in the scavenging of superoxide radicals. The observed data showed that status of antioxidant enzymes such as SOD could provide a meaningful tool for depicting drought tolerance of wheat genotype.


Assuntos
Estresse Fisiológico , Superóxido Dismutase/metabolismo , Triticum/enzimologia , Antioxidantes/metabolismo , Betaína/metabolismo , Transporte Biológico , Secas , Genótipo , Peroxidação de Lipídeos , Malondialdeído/metabolismo , Oxirredução , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Isoformas de Proteínas , Superóxido Dismutase/genética , Triticum/genética , Triticum/fisiologia , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...